Math formulas and cheat sheets for Definite integrals of exponential functions

Definite integrals of exponential functions

0eaxcosbxdx=aa2+b2
0eaxsinbxdx=ba2+b2
0eaxsinbxxdx=arctanba
0eaxebxxdx=lnba
0eax2dx=12πa
0eax2cosbxdx=12πaeb24a
e(ax2+bx+c)dx=π2eb24ac4a
0xneaxdx=Γ(n+1)an+1
0xmeax2dx=Γ(m+12)2a(m+1)/2
0e(ax2+b/x2)dx=12πae2ab
0xdxex1=π26
0xn1ex1dx=Γ(n)(11n+12n+13n+)
0xdxex+1=π212
0xn1ex+1dx=Γ(n)(11n12n+13n)
0sinmxe2πx1dx=14cothm212m
0(11+xex)dxx=γ
0ex2exxdx=12γ
0(1ex1exx)dx=γ
0eaxebxxsec(px)dx=12ln(b2+p2a2+p2)
0eaxebxxcsc(px)dx=arctanbparctanap
0eax(1cosx)x2dx=arccotaa2ln(a2+1)