Math formulas and cheat sheets for Definite integrals of logarithmic functions

Definite integrals of logarithmic functions

10xm(lnx)ndx=(1)nn!(m+1)n+1,m>1,n=0,1,2,
10lnx1+xdx=π212
10lnx1xdx=π26
10ln(1+x)xdx=π212
10ln(1x)xdx=π26
10lnxln(1+x)dx=22ln2π212
10lnxln(1x)dx=2π26
0xp1lnx1+xdx=π2csc(pπ)cot(pπ),0<p<1
10xmxnlnxdx=lnm+1n+1
0exlnxdx=γ
0ex2lnxdx=π4(γ+2ln2)
0ln(ex+1ex1)dx=π24
π/20ln(sinx)dx=π/20ln(cosx)dx=π2ln2
π/20(ln(sinx))2dx=π/20(ln(cosx))2dx=π2(ln2)2+π324
π0xln(sinx)dx=π22ln2
π/20sinxln(sinx)dx=ln21
2π0ln(a+bsinx)dx=2π0ln(a+bcosx)dx=2πln(a+a2b2)
π0ln(a+bcosx)dx=πln(a+a2b22)
π0ln(a22abcosx+b2)dx={2πlna2πlnbab>0ba>0
π/40ln(1+tanx)dx=π8ln2
π20secxln(1+bcosx1+acosx)dx=12(arccos2aarccos2b)