Math formulas and cheat sheets for Definite integrals of trig functions

Definite integrals of trig functions

Note: In the following formulas all letters are positive.

Basic formulas

π/20sin2xdx=π/20cos2xdx=π4
0sin(px)xdx=π/2 0π/2p>0p=0p<0
0sin2pxx2=πp2
01cos(px)x2dx=πp2
0cos(px)cos(qx)xdx=lnqp
0cos(px)cos(qx)x2dx=π(qp)2
2π0dxa+bsinx=2πa2b2
2π0dxa+bcos(x)=2πa2b2
0sinax2dx=0cos(ax2)dx=12π2a
0sinxxdx=0cosxxdx=π2
0sin3xx3dx=3π8
0sin4xx4dx=π3
0tanxxdx=π2
π/20dxa+bcosx=arccos(b/a)a2b2

Advanced formulas

π0sin(mx)sin(nx)dx={0π/2m,n integers and mnm,n integers and m=n
π0cos(mx)cos(nx)dx={0π/2m,n integers and mnm,n integers and m=n
π0sin(mx)cos(nx)dx={02m/(m2n2)m,n integers and m+n oddm,n integers and m+n even
π/20sin2mxdx=π/20cos2mxdx=1352m12462mπ2
π/20sin2m+1xdx=π/20cos2m+1xdx=2462m1352m+1
π0sin2p1xcos2q1xdx=Γ(p)Γq2Γ(p+q)
0sin(px)cos(qx)xdx= 0π/2π/4p>q>00<p<qp=q>0
0sin(px)sin(qx)x2dx={πp/2πq/20<pqpq>0
0cos(mx)x2+a2dx=π2aema
0xsin(mx)x2+a2dx=π2ema
0sin(mx)x(x2+a2)dx=π2a2(1ema)
2π0dx(a+bsinx)2=2π0dx(a+bcosx)2=2πa(a2b2)3/2
2π0dx12acosx+a2=2π1a2,  0<a<1
π0xsinxdx12acosx+a2=πaln(1+a)πln(1+1a)|a|<1|a|>1
π0cos(mx)dx12acosx+a2=πam1a2,  a2<1
0sin(axn)dx=1na1/nΓ(1/n)sinπ2n,  n>1
0cos(axn)dx=1na1/nΓ(1/n)cosπ2n,  n>1
0sinxxpdx=π2Γ(p)sin(pπ/2),  0<p<1
0cosxxpdx=π2Γ(p)cos(pπ/2),  0<p<1
0sin(ax2)cos(2bx)dx=12π2a(cosb2asinb2a)
0cos(ax2)cos(2bx)dx=12π2a(cosb2a+sinb2a)
0dx1+tanmxdx=π4